Using GIS to Optimize Gathering Line Operations and Maintenance

A Risk Based Approach

W. Kent Muhlbauer WKM Consultancy

Terms

- GIS
- Gathering Lines
- O&M
- Optimize
- Risk Based

Gathering PL: One of Several Types of PL

... sometimes with unique designs

... and special requirements

... in interesting areas

... and in challenging areas

Definitions (for presentation)

- GIS = computer tools to use and manage data
- Gathering Line = a type of PL
- O&M = activities of running a PL
- Optimize = to make better
- Risk Based
 - Risk = PoF x CoF
 - Risk-based = using an understanding of risk

Key Message

Understanding Risk = Better Decision-Making
Unprecedented Opportunities to Understand Risk

Data Drives the Process

IM Rule Data (Liquids)

- HCA info
- Results from previous testing inspection
- Leak history
- Corrosion or condition data
- CP history
- Soil corrosivity
- Type and quality of coating
- Age of pipe
- Product characteristics
- Pipe wall

- Pipe diameter
- Subsidence
- All ground movement potential
- Security of thru-put
- Time since last inspection
- Defect growth rates
- Stress levels
- Leak detection
- Physical support

IM Rule Data (Gas) Data Elements for Prescriptive IMP

Attribute Data

- Pipe wall
- Pipe OD
- Seam type
- Manufacturer
- Date of manufacture
- Material properties
- Equipment properties

Inspection

- Pressure tests
- In-line inspections
- Geometry inspections
- Bell hole inspections
- CP & close-interval surveys
- Coating condition and DCVG
- surveys
- Audits & reviews

IM Rule Data (Gas) Data Elements for Prescriptive IMP, Cont'd

Construction

- Year installed
- Bending method
- Joining method and
- inspection
- Depth of cover
- Crossings, casings
- Pressure test
- Coating type
- Field coating method
- Soil and backfill
- Cathodic protection
- Inspection reports

Gas IM Rule Data Elements for Prescriptive IMP

Considerations:

- Data must support risk assessment
- Data age and accuracy
- Missing data is not justification to exclude a threat from the IMP
- Common reference system needed GIS and geospatial referencing a practical necessity for all but simplest systems
- Appendix A gives additional data needs on a threat specific basis

Dealing with Uncertainty

Error 1: Call it 'good' when its really 'bad'

Error 2: Call it 'bad' when its really 'good'

Use of Data

- Not everything that matters can be counted;
- Not everything that can be counted matters

-Albert Einstein

Data Collection; Maintenance; Sectioning

Begsta	Endsta	Event	Code
0	100	pipe_wall	0.375
100	120	pipe_wall	0.5
0	50	soil_type	Α
50		soil_type	В
0	70	рор	2
70	110	рор	1
110	120	рор	2
75	85	casing	yes

seg	Begsta	Endsta	pipe_wall	soil_type	pop	casing
1001	0	50	0.375	À	2	no
1002	50	70	0.375	В	2	no
1003	70	75	0.375	В	1	no
1004	75	85	0.375	В	1	yes
1005	85	100	0.375	В	1	no
1006	100	110	0.5	В	1	no
1007	110	120	0.5	В	2	no

Risk Analysis: Turning Data into Information

Risk = Probability x Consequences

- Probability = Degree of Belief
- Risk Mitigation via Integrity Mgmt in HCA

Threat Categories

- ASME B31.8 Supplement considers 3 categories of threat:
 - Time Dependent May worsen over time; require periodic reassessment
 - Time Stable Does not worsen over time; one-time assessment is sufficient (unless conditions of operation change)
 - Time Independent Occurs randomly; best addressed by prevention

Time Dependent Threats

- External corrosion
- Internal corrosion
- Stress-corrosion cracking (SCC)
- Fatigue

Time Stable Threats (resistance)

- Manufacturing-related flaws in
 - Pipe body
 - Pipe seam
- Welding / Fabrication-caused flaws in
 - Girth welds
 - Fabrication welds
 - Wrinkled / buckled bend
 - Threads / couplings

- Defects present in equipment
 - Gaskets, O-rings
 - Control / relief devices
 - Seals, packing
 - Other equipment

Time Independent (Random) Threats

- Third-party/Mechanical damage
 - Immediate failure
 - Delayed failure (previously damaged)
 - Vandalism
- Incorrect operations
- Weather related
 - Cold weather
 - Lightning
 - Heavy rain, flood
 - Earth movement

Failure Mechanisms

Hawthorne Effect

"Anything that is studied, improves."

Better Estimates: Absolute Risk Values

Frequency of consequence

- Temporally
- Spatially
 - •Incidents per mile-year
 - •fatalities per mile-year
 - •dollars per km-decade

Better Modeling: PoF Triad

- <u>Exposure</u>: frequency or intensity of failure mechanism(s) reaching the pipe
 when no mitigation applied
- Mitigation measure: reduces frequency or intensity of the exposure reaching the pipe; keeps mechanism off the pipe
- Resistance: ability to resist failure given presence of exposure/threat

attack > defense > survival

Potential for Damage vs Failure

- Probability of Damage (PoD) = f (exposure, mitigation)
- Probability of Failure (PoF) = f (PoD, resistance)

Estimating Threat Exposure

- Events per mile-year for time independent / random mechanism
 - third party
 - incorrect operations
 - weather & land movements

MPY for degradation mechanisms

- ext corr
- int corr
- SCC / fatigue

Rates: Failures, Exposures, Events, etc

Failures/yr	Years to Fail	Approximate Rule Thumb
1,000,000	0.000001	Continuous failures
100,000	0.00001	fails ~10 times per hour
10,000	0.0001	fails ~1 times per hour
1,000	0.001	fails ~3 times per day
100	0.01	fails ~2 times per week
10	0.1	fails ~1 times per month
1	1	fails ~1 times per year
0.1	10	fails ~1 per 10 years
0.01	100	fails ~1 per 100 years
0.001	1,000	fails ~1 per 1000 years
0.0001	10,000	fails ~1 per 10,000 years
0.00001	100,000	fails ~1 per 100,000 years
0.000001	1,000,000	One in a million chance of failure
0.0000000001	1,000,000,000	Effectively, it never fails

Time Dependent Mechanisms

```
PoF _{time-dep} = f(TTF)
```

where

TTF = "time to failure"

TTF = (available pipe wall) / [(unmitigated mpy) x (1 – mitigation effectiveness)]

TTF to PoF

Pof: TTF & TTF99

Measuring Mitigation

Strong, single measure or Accumulation of lesser measures

Mitigation $\% = 1-[(1-mit1) \times (1-mit2) \times (1-mit3)...]$

In words:

mitigation % = 1 - (remaining threat)

remaining threat = (remnant from mit1) AND (remnant from mit2) AND (remnant from mit3) ...

What is cumulative mitigation benefit from 3 measures that independently produce effectiveness of 60%, 60%, and 50%? 92%

Exposure	Mitigation	Reduction	freq damage	prob damage
events/mi-yr			events/mi-yr	Prob/mi-yr
10	90.0%	10	1	63.2%
10	99.0%	100	0.1	9.52%
10	99.9%	1000	0.01	1.00%

Best Estimate of Pipe Wall Today

Final PoF

$$PoS = 1 - PoF$$

PoF
$$_{overall}$$
 = 1-[(1-PoF $_{thdpty}$) x (1-PoF $_{corr ext}$) x (1-PoF $_{corr int}$) x (1-PoF $_{incops}$) x (1-PoF $_{geohazard}$)]

Understanding Consequence of Failure

- Risk = (PoF)·(Consequence)
- Consequence of Failure
 - Leak vs rupture
 - Estimate of hazard area
 - Estimate of damages (property, people, etc)

Initiating Event

Hazard Zones

PIR Calculations

TTO13 & TTO14

Table 7.1 Summary of Potential Impact Radius Formula

Product	PIR Formula		
Ethylene	$r = 1.04 \cdot \sqrt{p \cdot d^2}$		
Hydrogen	$r = 0.47 \cdot \sqrt{p \cdot d^2}$		
Natural Gas (Lean)	$r = 0.69 \cdot \sqrt{p \cdot d^2}$		
Natural Gas (Rich)	$r = 0.73 \cdot \sqrt{p \cdot d^2}$		
Syngas	$r = 0.49 \cdot \sqrt{p \cdot d^2}$ Note 1		
Note 1 See discussion in Section 4.8.5			

Table 8.1 Summary of PIR Formulae

Product		PIR Formula	
Acetylene	1 psi Overpressure	$r = 0.021 \cdot (d^2 \cdot p)^{1/3}$	
	1 psi Overpressure	$r = 0.014 \cdot \left(d^2 \cdot p\right)^{1/3}$	
Anhydrous Ammonia (Liquefied under pressure)	Rural Conditions	$r = 0.08 \cdot \left(d^2 \cdot p\right)^{0.48}$	
	Urban Conditions	$r = 0.07 \cdot \left(d^2 \cdot p\right)^{0.45}$	
	1 psi Overpressure	$r = 0.012 \cdot \left(d^2 \cdot p\right)^{1/3}$	
Carbon Monoxide	Rural Conditions	$r = 0.04 \cdot \left(d^2 \cdot p\right)^{0.5}$	
	Urban Conditions	$r = 0.03 \cdot \left(d^2 \cdot p\right)^{0.45}$	
Chlorine	Rural Conditions	$r = 0.38 \cdot (d^2 \cdot p)^{0.49}$	
Cillottile	Urban Conditions	$r = 0.16 \cdot \left(d^2 \cdot p\right)^{0.5}$	
Ethylene	1 psi Overpressure	$r = 0.021 \cdot \left(d^2 \cdot p\right)^{1/3}$	
	1 psi Overpressure	$r = 0.015 \cdot (d^2 \cdot p)^{1/3}$	
Hydrogen Sulfide	Rural Conditions	$r = 0.37 \cdot \left(d^2 \cdot p\right)^{0.45}$	
	Urban Conditions	$r = 0.27 \cdot \left(d^2 \cdot p\right)^{0.46}$	
Methane 1 psi Overpressure		$r = 0.019 \cdot \left(d^2 \cdot p\right)^{1/3}$	
Rich Gas 1 psi Overpressure		$r = 0.020 \cdot \left(d^2 \cdot p\right)^{1/3}$	

Receptor Characterization

- fatalities
- injuries
- occupancy
- shielding
- escape
- prop damage
- waterways
- ground water
- wetlands
- •T&E wildlife
- preserves
- historical sites

Monetized Risk: Expected Loss

Surrogate for 'risk' and 'financial exposure'

Benefits

- Common denominator allows unlimited comparisons
- Defines the magnitude of the problem
- Implies appropriate reaction
- Difficulties
 - Some consequences difficult to monetize
 - Annual (averages) vs Extremes

Damage State Estimates

- Create Zones Based on Threshold Distances
- Estimate Damage States (or PoD) for Each Zone

Hazard Zone	injury rate	fatality rate	environ damage rate	service interruption rate
<100'	80%	8%	50%	100%
100'-50% PIR	50%	5%	30%	90%
50% -100% PIR	20%	2%	10%	80%

Sample EL Calculations

						unit cost	unit cost		unit cost	
			\$100,000	\$3,500,000		\$ 50,000	Expected Loss			
Hole Size	Ignition Scenario	Maximum Distance (ft)	Probability of Maximum Distance	Hazard Zone Group	# people	Human injury costs	Human fatality costs	# environ units	Environ Damage Costs	Probability weighted dollars per failure
	immediate	400	4.8%	100'-50% PIR	5	\$ 3,600	\$ 12,600	1	\$ 720	\$ 16,920
rupture	delayed	1500	1.6%	50% -100% PIR	10	\$ 960	\$ 3,360	1	\$ 80	\$ 4,400
	no ignition	300	1.6%	100'-50% PIR	5	\$ 1,200	\$ 4,200	1	\$ 240	\$ 5,640
	immediate	300	1.8%	100'-50% PIR	5	\$ 1,350	\$ 4,725	1	\$ 270	\$ 6,345
medium	delayed	600	1.8%	100'-50% PIR	5	\$ 1,350	\$ 4,725	1	\$ 270	\$ 6,345
	no ignition	100	8.4%	100'-50% PIR	5	\$ 6,300	\$ 22,050	1	\$ 1,260	\$ 29,610
	immediate	50	8.0%	<100'	1	\$ 1,920	\$ 6,720	0.5	\$ 1,000	\$ 9,640
small	delayed	80	8.0%	<100'	1	\$ 1,920	\$ 6,720	0.5	\$ 1,000	\$ 9,640
	no ignition	30	64.0%	<100'	1	\$15,360	\$ 53,760	0.5	\$ 8,000	\$ 77,120
100.0% Total expected loss per failure at this location					\$165,660					

Final EL Value

At a specific location along a pipeline:

Expected Loss				
Failure Rate (failures per mile-year) Probability of Hazard Zone ^{1,2}		Probability weighted dollars ^{2,3}	Probability weighted dollars per mile-year	
	4.80%	\$16,920	\$0.81	
	1.60%	\$4,400	\$0.07	
	1.60%	\$5,640	\$0.09	
0.004	1.80%	\$6,345	\$0.11	
0.001	1.80%	\$6,345	\$0.11	
	8.40%	\$29,610	\$2.49	
	8.00%	\$9,640	\$0.77	
	8.00%	\$9,640	\$0.77	
	64.00%	\$77,120	\$49.36	
	100.00%	\$165,660	\$54.59	

Table Notes

- 1. after a failure has occurred
- 2. from Table 2 above, per event
- 3. (damage rate) x (value of receptors in hazard zone), per event

Expected Losses Vary Along PL

Step 1: Determine On-Line Sampling Interval

Step 2: Establish Hazard Zones

Step 3: Determine Number of Houses in Each Zone

(Point Features)

Step 4: Determine Length of Waterways in Each

Zone (Line Features)

Step 5: Determine Area of HCAs in Each Zone (Polygon

Features)

Summarize Impacted Receptors (Data Table)

Hazard Zones & Consequence Estimates

The Sliding Impact Area based on—

- Product specifications
- Spill quantity
- Terrain configuration
- Infiltration, evaporation and Pooling

Expected Loss Calcs (Probability * Impacted Feature Valuation)

Each row represents one pipeline release location

Expected Loss is a function of each Zone's Probability of occurring and the Zone's Potential Loss Expected Loss = (Z1_Prob * Z1_PLoss) + (Z2_Prob * Z2_PLoss) + (Z3_Prob * Z3_PLoss)

 $EL_{20} = (.88 * 101660) + (.07 * 15812) + (.07 * 28609) = $146,081 \dots considerable risk exposure at this location$

Visualization of Risks

If you put tomfoolery into a computer, nothing comes out of it but tomfoolery. But this tomfoolery, having passed through a very expensive machine, is somehow ennobled and no-one dares criticize it.

- Pierre Gallois

Receiver Operating Characteristic (ROC) Curve

statistical perspective	management perspective	public perspective	
false positive	false alarm	crying wolf	
false negative	missed alarm	wolf in sheep's clothing	
true positive	actual alarm	wolf in plain sight	
true negative	no alarm	no wolf	

Can you tolerate 20% FP in exchange for only missing one in one-hundred?

Optimizing O&M

Resource Allocation Modeling

Responding to Changes Along ROW

Risk-based thinking to avoid inefficient, one-sizefits-all solutions

Example:

Increased CoF potential

- Change CoF
 - Product, pressure, ignition, containment, response
- Change PoF
 - Design factors
 - Respond to threat(s)
 - Increase patrol
 - Protective slab
 - Surveys: coating, CP
 - Training
 - Geotech study

Reported Mitigation Benefits

Mitigation	Impact on risk
Increase soil cover	56% reduction in mechanical damage when soil cover increased from 1.0 to 1.5 m
Deeper burial	25% reduction in impact failure frequency for burial at 1.5 m; 50% reduction for 2m; 99% for 3m
Increased wall thickness	90% reduction in impact frequency for >11.9-mm wall or >9.1-mm wall with 0.3 safety factor
Concrete slab	Same effect as pipe wall thickness increase
Concrete slab	Reduces risk of mechanical damage to "negligible"
Underground tape marker	60% reduction in mechanical damage
Additional signage	40% reduction in mechanical damage
Increased one-call	
awareness and response	50% reduction in mechanical damage
Increased ROW patrol	30% reduction in mechanical damage
	30% heavy equipment-related damages; 20% ranch/farm activities; 10%
Increased ROW patrol	homeowner activities
Improved ROW, signage, public education	5–15% reduction in third-party damages

Risk Management Options

Resource Allocation Choice	Cost Impact	Risk Impact
Increase Public Education	+ \$4000	- 0.8%
Perform Close Interval Survey	+ \$11000	- 2.6%
Reduce Air Patrol	- \$7600	+ 1.1%
Perform Hydrostatic Test	+ \$67000	- 8.2%

Action Triggers / Strategies

When to take action Proportional level of action

What is "Safe Enough"?

- Many risk levels are considered insignificant or tolerable
 - Regulatory precedents
 - ALARP
 - land use/facility siting
 - Environmental clean up criteria
 - EIS, EA
 - Industry precedents
 - Reliability Based Design
 - Limit state
 - Often measured in terms of fatalities
- Philosophical challenges placing this in IMP context
 - 'acceptable risk' argument is not explicitly recognized in IMP
 - very low risk levels can be shown in many covered segments, especially when short

Acceptable Risk

Canadian Risk-Based Land Uses

Allowable Land Uses

Reliability Based Design

Safety risk

Number of people affected = $A \times P \times \rho$

Affected area - proportional to pd²

Ignition probability - proportional to d

Population density

Expected number of people affected $\alpha \rho pd^3$

Nessim et al. Target Reliability Levels for Design and Assessment of Onshore Natural Gas Pipelines. International Pipeline Conference, Calgary, Alberta, 2004

New Possibilities: Reliability Targets

PRCI work

- Acceptable risk as implied by current regs & stds
- Based on probability of fatality
- Considers both individual and societal risk criteria
- Annex in CSA Z662; considered for ASME B31.8
- Tolerable PoF: 5E-5 failures per km-yr in Class 3

Therable POF. SE-3 failures per
$$R_{T} = \begin{cases} 1 - \frac{9}{(\rho P D^{3})^{0.66}} & \rho P D^{3} \leq 1.0 \times 10^{5} \\ 1 - \frac{450}{\rho P D^{3}} & 1.0 \times 10^{5} < \rho P D^{3} \leq 6.0 \times 10^{7} \\ 1 - \frac{2.1 \times 10^{7}}{(\rho P D^{3})^{1.6}} & \rho P D^{3} > 6.0 \times 10^{7} \end{cases}$$

New Possibilities: Optimizing Decisions

<u>Unprecedented</u> opportunities to understand risk issues

- New Tools & Techniques
- New ways of thinking emerging

Range of Opportunities

From

Tweaking existing O&M programs and design protocols

To

Establishing corporate/regional/national acceptable risk levels

He who shoots at nothing, hits nothing

