Not Your Grandfather's Map

A Brief Discussion of the History, Driving Forces, Impediments, Opportunities and Future Directions of GIS Technology's Evolution/Revolution

Joseph K. Berry

W.M. Keck Scholar in Geosciences, University of Denver Principal, Berry & Associates // Spatial Information Systems 2000 S. College Ave, Suite 300, Fort Collins, CO 80525 Phone: (970) 215-0825 Email: jberry@innovativegis.com Website at www.innovativegis.com/basis

Estes Park, Colorado

GeoGathering 2007

Historical Setting and GIS Evolution

Geotechnology (GPS, GIS, RS) DIGITAL

Computer Mapping automates the cartographic process (70s)

Spatial Database Management links computer mapping techniques with traditional database capabilities (80s)

Map Analysis representation of relationships within and among mapped data (90s)

Multimedia Mapping full integration of GIS, Internet and visualization technologies (00s) Manual Mapping for 8,000 years

ANALOG

Desktop Mapping Framework (Vector, Discrete)

Points, Lines and Polygons

ArcView GIS 3.2 - 8 × **Spatial** File Edit View Theme Graphics Window Help Table 332,116.04 ↔ 6,271,027,47 ± Scale 1: _ 🗆 × 🕺 View1 Local Roads Dominant Species: Ouerv Aw= Amen 🖌 1st Dominant Speci **Object ID** Bw=White birch **Builder** P=Pine X,Y Рb Pb=Balsam popla: Sb Sb=Black spruce Sw X,Y Sw=White spruce Tree Height (m) ... identify tall 0 • 5 X,Y 11 - 18 17 - 21 aspen stands 22 - 28 Age (years) 0 - 26 🍭 1st Dominant Species _ 🗆 × Tomber Productivity Attribute Values Fields G=Good M=Medium Table 16 [Cc] and ۰ F=Fair 17 [Heiaht] >or >=[Sp1] 18 Feature **Species** etc. 19 [Sp1num] not \leq <= 20 [Sp1per] ()Ŧ [Sp2] 21 **Object ID** Aw Update Values [Sp2num] ([Sp1] = "Aw") and ([Height] > 20) New Set Add To Set Discrete, irregular map features (objects) Select From Set

(Berry)

MAP Analysis Framework (Raster, Continuous)

Click on...

 $\sqrt{\alpha}$

Slope map

Points, Lines, Polygons and Surfaces

(Berrv)

Map Analysis Evolution (90s, Revolution)

Traditional GIS

Forest Inventory Map

- Points, Lines, Polygons
- <u>Discrete Objects</u>
- Mapping and Geo-query

<u>Spatial Analysis</u>

Slope Map Surface

- Cells, Surfaces
- <u>Continuous Geographic Space</u>
- Contextual Spatial Relationships

Traditional Statistics

Maximum= 103.0 ppm Mean= 22.4 ppm StDEV= 15.5

- Mean, StDev (Normal Curve)
- <u>Central Tendency</u>
- Typical Response (scalar)

Spatial Statistics

Spatial Distribution (Surface)

- Map of Variance (gradient)
- Spatial Distribution
- Numerical Spatial Relationships

Travel-Time for Our Store to Everywhere

Travel-Time for Competitor Stores

Travel-Time maps from several stores treating highway travel as four times faster than city streets.

Blue tones indicate locations that are close to a store (estimated <u>twelve minute drive or less</u>). Customer data can be appended with travel-time distances and analyzed for spatial relationships in sales and demographic factors.

Travel-Time Surfaces (Our Store & Competitor #4)

Blue tones indicate locations that are close to a store (estimated twelve minute drive or less). The green through red tones form a <u>bowl-like surface</u> with larger travel-time values identifying locations that are farther away.

Competition Map (Store #111 & Competitor #4)

The travel-time surfaces for two stores can be compared (subtracted) to identify the relative access advantages throughout the project area.

Zero values indicate the same travel-time to both stores (equidistant travel-time) ...yellow tones identifying the <u>Combat Zone</u> ; green Store #111 advantage; red Competitor #4 advantage

Power and Pipeline Routing (Least cost path)

...see <u>www.innovativegis.com</u> Online Papers, "A Consensus Method Finds Preferred Routing"

Global routing solution identifying... Optimal Route Optimal Corridor

Infusing stakeholder perspectives into Calibration and Weighting

...<u>Engineering</u> considerations, <u>Natural Environment</u> consequences and <u>Built Environment</u> impacts

...see <u>www.innovativegis.com</u> Online Papers, "Identifying and Evaluating Alternative Pipeline Routes and Corridors "

Map Analysis Evolution (Revolution)

Traditional GIS

Forest Inventory Map

- Points, Lines, Polygons
- Discrete Objects
- Mapping and Geo-query

<u>Spatial Analysis</u>

Store Travel-Time (Surface)

- Cells, Surfaces
- <u>Continuous Geographic Space</u>
- Contextual Spatial Relationships

Traditional Statistics

0.653 -3s - 2s - 1s MEAN + 1s + 2s + 3s Minimum= 5.4 ppm

Maximum= 3.4 ppm Maximum= 103.0 ppm Mean= 22.4 ppm StDev= 15.5

- Mean, StDev (Normal Curve)
- <u>Central Tendency</u>
- Typical Response (scalar)

Spatial Distribution (Surface)

- Map of Variance (gradient)
- Spatial Distribution
- Numerical Spatial Relationships

Spatial Interpolation (Spatial Distribution)

The "iterative smoothing" process is similar to slapping a big chunk of modeler's clay over the "data spikes," then taking a knife and cutting away the excess to leave a <u>continuous surface</u> that encapsulates the peaks and valleys implied in the original field samples ...<u>mapping the Variance</u>

(digital slide show <u>SSTAT</u>)

Visualizing Spatial Relationships

...groups of "floating balls" in data space identify locations in the field with similar data patterns- data zones

Spatial Data Mining

...other techniques, such as Level Slicing, Similarity and Map Regression, can be used to discover relationships among map layers ...map-ematics/statistics

The Precision Ag Process (Fertility example)

As a combine moves through a field it 1) uses GPS to check its location then 2) checks the yield at that location to 3) create a continuous map of the

Step 4)

On-the-Fly Yield Map

Farm dB

Map Analysis

412.0

45c.18

177.0

32.9

yield variation every few feet. This map is
4) combined with soil, terrain and other maps to derive 5) a "Prescription Map" that is used to
6) adjust fertilization levels every few feet in the field (variable rate application).

Prescription Map Step 5)

Variable Rate Application Step 6)

(Berry)

Interactive Maps

Animated Maps

3) Visualization

Maps with Integrated

- Photos
- Video
- Audio
- Text
- Data

Rendered Scenes

GPS/GIS Enabled Devices and Internet Mapping

Google Earth (Killer App of 2005)

Vessel for Mapped Data— has brought geotechnology to the masses; not a GIS but digests map data for 3D display with satellite imagery of the globe as backdrop

3-D Visualization Approaches (Mega-Trend #2)

Image Draping -- is an established technique in GIS. Draping a topographic or thematic map onto a 3-D terrain surface is effective but relies on abstract colors, shading and symbols.

"Map Abstraction"

Landscape Visualization (Rendering Technique)

"Laying the Carpet"

Step 1) 3-D Terrain Surface

Step 4) Tree Objects

"Pouring the Trees"

Step 2) Polygon Containers Step 5) Final Composition

Step 3) Surface Texture Step 6) Atmospheric Effects

Visualizing Landscape Impacts (GIS Rendering)

Visualizing Landscape Impacts (Clear cut)

Visualizing Landscape Impacts (Water retention cut)

Visualizing Landscape Conditions

... changing the landscape's carpet and objects to simulate different conditions

Before Fire

After Fire

(Berry)

Geospatial Multimedia (Mega-Trend #4)

...take pictures with a digital camera or video recorder while carrying a GPS with 'track logging' then link the Lat/Lon with each picture.

(Berry)

Pictures are "posted and linked" to a map

(See http://www.geoplace.com/gw/2001/0501/0501map.asp for more information)

<u>Digital Camera</u> ✓ <u>What (picture)</u> ✓ When (time)

🗹 When (time)

GPS Unit

Where (X,Y)

MediaMapper GeoVideo Software

Red Hen Systems, <u>http://www.redhensystems.com/</u>

Google Earth (Killer App of 2005)

Vessel for Mapped Data— has brought geotechnology to the masses; not a GIS but digests map data for 3D display with satellite imagery of the globe as backdrop

A Peek at the Bleeding Edge (2010 and beyond)

(Berry)

Traditional Geographic Referencing (Cartesian)

Cartesian Coordinate System (X, Y, and Z)

- **Discrete Spatial Objects** (vector) *Point* (*X*,*Y*) as fundamental unit
 - Continuous Surfaces (grid) Cell (Col,Row) as fundamental unit

Alternative Geographic Referencing

Geographic Space

... Nested Hexagons as alternative to Traditional Square Grid (Cartesian)

зD

Abstract Space

...Attribute Value (A) replacing Z Geographic Coordinate

Re-tooling Analytics (and beyond)

... the new geo-referencing and data structures will spawn new analytic algorithms (e.g., 3D flows)

Regular hexahedron, 6 squares cube Regular 12 dodecahedron pentagons

Geo-referencing (2010)

- Nested Hexagons (2D hexagon grid)
- Continuous Surfaces (3D polyhedral grid)
- Space/Time Continuum (4D ????)

Animated Maps

Where Have We Been...

The US Department of labor identifies <u>Geotechnology</u> as one of the "three most important emerging and evolving fields" (along with Biotechnology and Nanotechnology)

GeoGathering 20

Computer Mapping (70s) — Spatial Database Management (80s)

Map Analysis

- 40 http://www.internet.com/state/sta
- In the fact of the

<u>Map Analysis</u> representation of relationships within and among mapped data (1990s) • <u>Spatial Analysis</u>— "<u>contextual</u>" relationships Spatial Statistics – "contextual"

• Spatial Statistics— "<u>numerical</u>" relationships

<u>Wultimedia Mapping</u> full integration of GIS, Internet and visualization technologies (2000s)

- Map Delivery/Devices— Internet & Devices
- 3D Visualization Draping & Virtual Reality
- Map Display— Interactive & Animated Maps
- Multimedia Mapping— GPS/Photos & Video
- Google Earth—New Vessel for Mapped Data

Geo-referencing (2010s) — Re-tooling Analytics (2020s) 🚺

